FacebookRSS feed

Agrotec

Trichoderma, um aliado da agricultura sustentável que é muito mais que um agente de controlo biológico - bibliografia

Por: João Prada1,2,3,4, Conceição Santos1,2, Leandro Pereira-Dias1,2,5,∗

1 iB2, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto

2 LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto

3 CITAB, Universidade de Trás-os-Montes e Alto Douro

4 Fundação Côa Parque

5 COMAV, Universitat Politècnica de València

A Comissão Europeia recomendou, no Pacto Ecológico Europeu, um conjunto de medidas que visam reduzir em 50% o uso de agroquímicos sintéticos até 2030. Estas medidas estimulam o recurso a técnicas verdes de controlo, que terão de assumir um papel fundamental na mitigação das ameaças às culturas. Isolados do género Trichoderma são frequentemente incorporados em formulações biofungicidas, biofertilizantes e condicionadoras de solo. Este artigo resume vários trabalhos onde se verificou empiricamente o papel que este agente de controlo pode assumir na proteção e promoção das culturas agrícolas. As espécies de Trichoderma foram capazes de apresentar mecanismos antagónicos sobre um vasto leque de patógenos, além de serem capazes de induzir as defesas das plantas, interagir positivamente com a comunidade de microorganismos do solo (microbioma do solo), solubilizar nutrientes para as raízes e remediar o solo de alguns contaminantes. Em suma, a ação destes microrganismos tem impacto direto no aumento do rendimento das culturas e da qualidade dos seus produtos.

BIBLIOGRAFIA

Bigot, G., Sivilotti, P., Stecchina, M., Lujan, C., Freccero, A., and Mosetti, D. (2020). Long-term effects of Trichoderma asperellum and Trichoderma gamsii on the prevention of esca in different vineyards of Northeastern Italy. Crop Prot. 137, 105264. doi: 10.1016/j.cropro.2020.105264.

Brauer, V. S., Rezende, C. P., Moreira Pessoni, A., De Paula, R. G., Rangappa, K. S., Chandra Nayaka, S., et al. (2019). Antifungal agents in agriculture: Friends and foes of public health. Biomolecules 9, 521. doi: 10.3390/biom9100521.

Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., et al. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 73, 106–113. doi: 10.1016/J.PLAPHY.2013.08.011.

Cameron, A., and Sarojini, V. (2014). Pseudomonas syringae pv. actinidiae: Chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 63, 1–11. doi: 10.1111/PPA.12066.

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del-Val, E., and Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 92, fiw036. doi: 10.1093/femsec/fiw036.

Coppola, M., Diretto, G., Digilio, M. C., Woo, S. L., Giuliano, G., Molisso, D., et al. (2019). Transcriptome and metabolome reprogramming in tomato plants by Trichoderma harzianum strain T22 primes and enhances defense responses against aphids. Front. Physiol. 10, 745. doi: 10.3389/fphys.2019.00745.

Di Marco, S., Metruccio, E. G., Moretti, S., Nocentini, M., Carella, G., Pacetti, A., et al. (2022). Activity of Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080 toward diseases of ESCA complex and associated pathogens. Front. Microbiol. 12, 813410. doi: 10.3389/fmicb.2021.813410.

European Commission (2020). Farm to Fork Strategy.

Fraceto, L. F., Maruyama, C. R., Guilger, M., Mishra, S., Keswani, C., Singh, H. B., et al. (2018). Trichoderma harzianum-based novel formulations: potential applications for management of Next-Gen agricultural challenges. J. Chem. Technol. Biotechnol. 93, 2056–2063. doi: 10.1002/jctb.5613.

Khare, E., Kumar, S., and Kim, K. (2018). Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusarium oxysporum and chickpea wilt. Environ. Sustain. 1, 39–47. doi: 10.1007/s42398-018-0001-7.

Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., and Srivastava, R. C. (2012). Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian J. Microbiol. 52, 137–144. doi: 10.1007/s12088-011-0205-3.

López-López, M. E., Del-Toro-Sánchez, C. L., Gutiérrez-Lomelí, M., Ochoa-Ascencio, S., Aguilar-López, J. A., Robles-García, M. A., et al. (2022). Isolation and characterization of Trichoderma spp. for antagonistic activity against avocado (Persea americana Mill) fruit pathogens. Horticulturae 8, 714. doi: 10.3390/horticulturae8080714.

Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., and Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J. Bacteriol. 178, 6382–6385. doi: 10.1128/jb.178.21.6382-6385.1996.

Mahmoud, G. A.-E., Abdel-Sater, M. A., Al-Amery, E., and Hussein, N. A. (2021). Controlling Alternaria cerealis MT808477 tomato phytopathogen by Trichoderma harzianum and tracking the plant physiological changes. Plants 10, 1846. doi: 10.3390/plants10091846.

Massi, F., Torriani, S. F. F., Borghi, L., Toffolatti, S. L., and Fernández-Ortuño, D. (2021). Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 9, 119. doi: 10.3390/microorganisms9010119.

Meyer, M. C., Mzaro, S. M., and Silva, J. C. eds. (2019). Trichoderma: Uso na agricultura. Brasília, Brasil: Embrapa.

Rahman, S. F. S. A., Singh, E., Pieterse, C. M. J., and Schennk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. doi: doi.org/10.1016/j.plantsci.2017.11.012.

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., et al. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8, 34. doi: 10.3390/plants8020034.

Rodríguez-González, A., Carro-Huerga, G., Mayo-Prieto, S., Lorenzana, A., Gutiérrez, S., Peláez, H. J., et al. (2018). Investigations of Trichoderma spp. and Beauveria bassiana as biological control agent for Xylotrechus arvicola, a major insect pest in Spanish vineyards. J. Econ. Entomol. 111, 2585–2591. doi: 10.1093/jee/toy256.

Samolski, I., Rincón, A. M., Pinzón, L. M., Viterbo, A., and Monte, E. (2012). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158, 129–138. doi: 10.1099/mic.0.053140-0.

Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y., and Chen, J. (2016). Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol. Control 94, 37–46. doi: 10.1016/j.biocontrol.2015.12.001.

Savazzini, F., Longa, C. M. O., and Pertot, I. (2009). Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol. Biochem. 41, 1457–1465. doi: 10.1016/j.soilbio2009.03.027.

Sawant, I. S., Wadkar, P. N., Ghule, S. B., Rajguru, Y. R., Salunkhe, V. P., and Sawant, S. D. (2017). Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. Biol. Control 114, 133–143. doi: 10.1016/j.biocontrol.2017.08.011.

Schirmbock, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., et al. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl. Environ. Microbiol. 60, 4364–4370. doi: 10.1128/aem.60.12.4364-4370.1994.

Vázquez, M. B., Barrera, V., and Bianchinotti, V. (2015). Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl. Botany 93, 793–800. doi: 10.1139/CJB-2015-0085.

Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E. L., Ruocco, M., et al. (2013). Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 347, 123–129. doi: 10.1111/1574-6968.12231.

Vinceković, M., Maslov Bandić, L., Jurić, S., Jalšenjak, N., Čaić, A., Živičnjak, I., et al. (2019). The enhancement of bioactive potential in Vitis vinifera leaves by application of microspheres loaded with biological and chemical agents. J. Plant Nutr. 42, 543–558. doi: 10.1080/01904167.2019.1568467.

Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., et al. (2014). Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8, 71–126. doi: 10.2174/1874437001408010071.

Zafra, G., Moreno-Montaño, A., Absalón, Á. E., and Cortés-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ. Sci. Pollut. Res. 22, 1034–1042. doi: 10.1007/s11356-014-3357-y.

Zin, N. A., and Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 65, 168–178. doi: 10.1016/j.aoas.2020.09.003.