FacebookRSS feed

Agrotec

É seguro incorporar os substratos hortícolas, após cultivo, em solos agrícolas? - Bibliografia

Texto por: Joana Serrão1 , Sirine Bouguerra1 Verónica Nogueira2, Liliana Gonçalves1 Juan C. Sanchez-Hernandez3 Susana M.P. Carvalho4, Ruth Pereira1

1 GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável / Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto

2 Centro Interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto

3 Laboratório de Ecotoxicologia, Faculdade de Ciências Ambientais e Bioquímica, Universidade de Castela-La Mancha

4 GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável / Inov4Agro & DGAOT, Faculdade de Ciências, Universidade do Porto

A incorporação de substratos orgânicos usados em solos agrícolas é uma prática frequente, com vantagens ao nível da reciclagem destes resíduos e aumento da matéria orgânica do solo. No entanto, estes substratos têm o potencial de acumular resíduos de produtos fitofarmacêuticos durante o seu período de vida útil. Este trabalho avaliou os efeitos ecotoxicológicos da incorporação de 2,5, 5,0 e 10% de substrato orgânico proveniente do cultivo de tomate num solo agrícola. Para isso, foram realizados ensaios padronizados utilizando organismos terrestres e aquáticos e, ainda, determinados os efeitos na atividade enzimática e processos do solo. De um modo geral, a utilização do substrato em estudo como corretivo do solo foi benéfica. Porém, as práticas agronómicas durante o tempo de vida útil do substrato, o tipo de solo onde este será incorporado e a percentagem de incorporação, são fatores que podem alterar o nível de risco desta prática.

Bibliografia  

Berg, P., & Rosswall, T. (1985). Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biology and Fertility of soils, 1(3), 131-140.

Bouguerra, S., Gavina, A., Natal-da-Luz, T., Sousa, J. P., Ksibi, M., & Pereira, R. (2022). The use of soil enzymes activity, microbial biomass, and basal respiration to assess the effects of cobalt oxide nanomaterial in soil microbiota. Applied Soil Ecology, 169, 104246. doi:https://doi.org/10.1016/j.apsoil.2021.104246

Dannehl, D., Becker, C., Suhl, J., Josuttis, M., & Schmidt, U. (2016). Reuse of organomineral substrate waste from hydroponic systems as fertilizer in open-field production increases yields, flavonoid glycosides, and caffeic acid derivatives of red oak leaf lettuce (Lactuca sativa L.) much more than synthetic fertilizer. Journal of agricultural and food chemistry, 64(38), 7068-7075.

Fountain, M. T., & Hopkin, S. P. (2005). FOLSOMIA CANDIDA (COLLEMBOLA). Annu. Rev. Entomol, 50, 201-222.

Gougoulias, N., Vagelas, I., Giurgiulescu, L., Touliou, E., Kostoulis, V., & Chouliara, A. (2017). THE COIR SUBSTRATE FOR SOILLESS CULTURES, REUSED AS SOIL AMENDMENT (STUDY IN VITRO AND IN VIVO). Carpathian Journal of Food Science & Technology, 9(4).

ISO. (2012a). International Organization for Standardization Guideline: soil quality-determination of the effects of pollutants on soil flora—part 2: effects of contaminated soil on the emergence and early growth of higher plants. In (Vol. 11269-2:2012). Geneve, Switzerland.

ISO. (2012b). International Organization for Standardization Guideline: soil quality—effects of pollutants on earthworms—part 2: determination of effects on reproduction of Eisenia fetida /Eisenia andrei. In (Vol. 11268-2:2012). Geneve, Switzerland.

ISO. (2014). International Organization for Standardization Guideline 11267:2014: Soil quality — Inhibition of reproduction of Collembola (Folsomia candida) by soil contaminants. In. Geneve, Switzerland.

ISO. (2019). International Organization for Standardization Guideline: Soil quality — Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil-like materials — Part 1: Batch test using a liquid to solid ratio of 2 l/kg dry matter. In (Vol. 21268-1:2019). Geneve, Switzerland.

ISO. (2021). International Organization for Standardization Guideline: Soil, treated biowaste and sludge – Determination of pH. In (Vol. 10390:2021). Geneva, Switzerland.

Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of soils, 6(1), 68-72.

Kandeler, K. (1996). Nitrogen Mineralization. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in Soil Biology (pp. 135-143). Berlin, Heidelberg: Springer Berlin Heidelberg.

Kwan, K., & Dutka, B. (1995). Comparative assessment of two solid-phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and the Microtox® solid-phase test (SPT). Bulletin of Environmental Contamination and Toxicology, 55(3), 338-346.

OECD. (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test. In Section 2. Paris: OECD Publishing.

OECD. (2006). Test No. 221: Lemna sp. Growth Inhibition Test. In OECD Guidelines for the Testing of Chemicals. Paris: OECD Publishing.

Pereira, R., Rocha-Santos, T., Antunes, F., Rasteiro, M., Ribeiro, R., Gonçalves, F., . . . Lopes, I. (2011). Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. Journal of Hazardous Materials, 194, 345-354.

Robson, A. (2012). Soil acidity and plant growth: Elsevier.

Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996a). Methods in Soil Biology. Berlin, Heidelberg: Springer Berlin, Heidelberg.

Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996b). Nitrification and Denitrification. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in Soil Biology (pp. 144-161). Berlin, Heidelberg: Springer Berlin Heidelberg.

Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307.

Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulfatase Activity of Soils. Soil Science Society of America Journal, 34(2), 225-229. doi:https://doi.org/10.2136/sssaj1970.03615995003400020016x

Van Beek, C., Tóth, T., Hagyó, A., Tóth, G., Recatalá Boix, L., Añó Vidal, C., . . . Van der Zee, S. (2010). The need for harmonizing methodologies for assessing soil threats in Europe. Soil Use and Management, 26(3), 299-309.

Vollmer, A., Geilfus, C.-M., Nerlich, A., & Dannehl, D. (2022). Saving CO2 Emissions by Reusing Organic Growing Media from Hydroponic Tomato Production as a Source of Nutrients to Produce Ethiopian Kale (Brassica carinata). Sustainability, 14(18), 11263.

Von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of soils, 11(3), 216-220.

Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. In Dehydrogenases (Vol. 10, pp. 183-210). InTechOpen.

Zhang, X., Ge, J., Zhang, S., Zhao, Y., Cui, H., Wei, Z., . . . Cao, J. (2019). Bioavailability evaluation of dissolved organic matter derived from compost-amended soils. Journal of agricultural and food chemistry, 67(21), 5940-5948. doi:https://doi.org/10.1021/acs.jafc.9b01073