FacebookRSS feed

Agrotec

Os Lípidos e o seu Impacto na Sanidade da Vinha - Bibliografia

A sustentabilidade da agricultura é um tema emergente que tem um lugar de destaque na investigação que se faz atualmente em patologia vegetal e fitossanidade.

Viticultura

De modo a caminhar para uma agricultura sustentável é necessária a redução da aplicação de pesticidas. No entanto, a viticultura é uma das práticas agrícolas em que a aplicação de fitoquímicos é mais intensiva, dado que doenças como o míldio ameaçam devastar a maior parte das culturas em cada época de cultivo. Para desenvolver estratégias mais sustentáveis de controlo das doenças é importante compreender os processos moleculares que estão por trás da tolerância ou suscetibilidade a estas. 

BIBLIOGRAFIA

Agrios, G.N., 2005. chapter eleven - PLANT DISEASES CAUSED BY FUNGI, in: Agrios, G.N. (Ed.), Plant Pathology (Fifth Edition). Academic Press, San Diego, pp. 385–614. https://doi.org/10.1016/B978-0-08-047378-9.50017-8

Aubertot, J.-N., Barbier, J.M., Carpentier, A., Gril, J.-N., Guichard, L., Lucas, P., Savary, S., VOLTZ, M., 2007. Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et en limiter les impacts environnementaux. Expertise scientifique collective Inra-Cemagref (décembre 2005), Expertises Collectives.

Bakan, B., Marion, D., 2017. Assembly of the Cutin Polyester: From Cells to Extracellular Cell Walls. Plants (Basel) 6. https://doi.org/10.3390/plants6040057

Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M.-F., Mérillon, J.-M., 2006. Methyl Jasmonate Induces Defense Responses in Grapevine and Triggers Protection against Erysiphe necator. J. Agric. Food Chem. 54, 9119–9125. https://doi.org/10.1021/jf0618022

Benevenuto, R.F., Seldal, T., Hegland, S.J., Rodriguez-Saona, C., Kawash, J., Polashock, J., 2019. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.). BMC Plant Biology 19, 70. https://doi.org/10.1186/s12870-019-1650-0

Blum, M., Waldner, M., Gisi, U., 2010. A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genetics and Biology 47, 499–510. https://doi.org/10.1016/j.fgb.2010.02.009

Cabras, P., Angioni, A., 2000. Pesticide Residues in Grapes, Wine, and Their Processing Products. J. Agric. Food Chem. 48, 967–973. https://doi.org/10.1021/jf990727a

Cavaco, A.R., Figueiredo, J., Laureano, G., Sousa Silva, M., Matos, A.R., Figueiredo, A., 2019. Subtilisin-like proteins and lipid signalling events: the missing links in grapevine resistance to Plasmopara viticola. Acta Hortic. 567–574. https://doi.org/10.17660/ActaHortic.2019.1248.76

Chen, W.-J., Delmotte, F., Cervera, S.R., Douence, L., Greif, C., Corio-Costet, M.-F., 2007. At Least Two Origins of Fungicide Resistance in Grapevine Downy Mildew Populations. Appl Environ Microbiol 73, 5162–5172. https://doi.org/10.1128/AEM.00507-07

Chitarrini, G., Soini, E., Riccadonna, S., Franceschi, P., Zulini, L., Masuero, D., Vecchione, A., Stefanini, M., Di Gaspero, G., Mattivi, F., Vrhovsek, U., 2017. Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01524

Feng, Y., Wang, J., Luo, S., Fan, H., Jin, Q., 2012. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.). J Chem Ecol 38, 984–991. https://doi.org/10.1007/s10886-012-0155-1

Figueiredo, A., Monteiro, F., Sebastiana, M., 2015. First clues on a jasmonic acid role in grapevine resistance against the biotrophic fungus Plasmopara viticola. Eur J Plant Pathol 142, 645–652. https://doi.org/10.1007/s10658-015-0634-7

Figueiredo, J., Cavaco, A.R., GuerraGuimarães, L., Leclercq, C., Renaut, J., Cunha, J., EirasDias, J., Cordeiro, C., Matos, A.R., Silva, M.S., Figueiredo, A., 2020. An apoplastic fluid extraction method for the characterization of grapevine leaves proteome and metabolome from a single sample. Physiologia Plantarum. https://doi.org/10.1111/ppl.13198

Gessler, C., Pertot, I., Perazzoli, M., 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea 50, 3–44.

Guerreiro, A., Figueiredo, J., Sousa Silva, M., Figueiredo, A., 2016. Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00565

Kombrink, E., 2012. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236, 1351–1366. https://doi.org/10.1007/s00425-012-1705-z

Laureano, G., Figueiredo, J., Cavaco, A.R., Duarte, B., Caçador, I., Malhó, R., Sousa Silva, M., Matos, A.R., Figueiredo, A., 2018. The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Scientific Reports 8, 1–15. https://doi.org/10.1038/s41598-018-32559-z

Ludovici, M., Ialongo, C., Reverberi, M., Beccaccioli, M., Scarpari, M., Scala, V., 2014. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels. Food Additives & Contaminants: Part A 31, 2026–2033. https://doi.org/10.1080/19440049.2014.968810

Müller, V., Amé, M.V., Carrari, V., Gieco, J., Asis, R., 2014. Lipoxygenase Activation in Peanut Seed Cultivars Resistant and Susceptible to Aspergillus parasiticus Colonization. Phytopathology® 104, 1340–1348. https://doi.org/10.1094/PHYTO-12-13-0338-R

Nascimento, R., Maia, M., Ferreira, A.E.N., Silva, A.B., Freire, A.P., Cordeiro, C., Silva, M.S., Figueiredo, A., 2019. Early stage metabolic events associated with the establishment of Vitis vinifera - Plasmopara viticola compatible interaction. Plant Physiol. Biochem. 137, 1–13. https://doi.org/10.1016/j.plaphy.2019.01.026

Negrel, L., Halter, D., Wiedemann-Merdinoglu, S., Rustenholz, C., Merdinoglu, D., Hugueney, P., Baltenweck, R., 2018. Identification of Lipid Markers of Plasmopara viticola Infection in Grapevine Using a Non-targeted Metabolomic Approach. Front. Plant Sci. 9. https://doi.org/10.3389/fpls.2018.00360

OIV, 2020. State of the world vitivinicultural sector in 2019.

Regente, M., Monzón, G.C., de la Canal, L., 2008. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments. J Exp Bot 59, 553–562. https://doi.org/10.1093/jxb/erm329

Righetti, L., Lucini, L., Giorni, P., Locatelli, S., Dall’Asta, C., Battilani, P., 2019. Lipids as Key Markers in Maize Response to Fumonisin Accumulation. J. Agric. Food Chem. 67, 4064–4070. https://doi.org/10.1021/acs.jafc.8b06316

Sabater-Jara, A.B., Almagro, L., Pedreño, M.A., 2014. Induction of extracellular defense-related proteins in suspension cultured-cells of Daucus carota elicited with cyclodextrins and methyl jasmonate. Plant Physiology and Biochemistry 77, 133–139. https://doi.org/10.1016/j.plaphy.2014.02.006

Suh, J.H., Niu, Y.S., Wang, Z., Gmitter, F.G., Wang, Y., 2018. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease. J. Agric. Food Chem. 66, 1296–1304. https://doi.org/10.1021/acs.jafc.7b05273

Terral, J.-F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., Picq, S., Chevance, J.-B., Jung, C., Fabre, L., Tardy, C., Compan, M., Bacilieri, R., Lacombe, T., This, P., 2010. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany 105, 443–455. https://doi.org/10.1093/aob/mcp298

Toruño, T.Y., Stergiopoulos, I., Coaker, G., 2016. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology 54, 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204

Walley, J.W., Kliebenstein, D.J., Bostock, R.M., Dehesh, K., 2013. Fatty acids and early detection of pathogens. Current Opinion in Plant Biology 16, 520–526. https://doi.org/10.1016/j.pbi.2013.06.011

Zambito Marsala, R., Capri, E., Russo, E., Bisagni, M., Colla, R., Lucini, L., Gallo, A., Suciu, N.A., 2020. First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Science of The Total Environment 736, 139730. https://doi.org/10.1016/j.scitotenv.2020.139730